Entanglement convertibility by sweeping through the quantum phases of the alternating bonds XXZ chain
نویسندگان
چکیده
We study the entanglement structure and the topological edge states of the ground state of the spin-1/2 XXZ model with bond alternation. We employ parity-density matrix renormalization group with periodic boundary conditions. The finite-size scaling of Rényi entropies S2 and S∞ are used to construct the phase diagram of the system. The phase diagram displays three possible phases: Haldane type (an example of symmetry protected topological ordered phases), Classical Dimer and Néel phases, the latter bounded by two continuous quantum phase transitions. The entanglement and non-locality in the ground state are studied and quantified by the entanglement convertibility. We found that, at small spatial scales, the ground state is not convertible within the topological Haldane dimer phase. The phenomenology we observe can be described in terms of correlations between edge states. We found that the entanglement spectrum also exhibits a distinctive response in the topological phase: the effective rank of the reduced density matrix displays a specifically large "susceptibility" in the topological phase. These findings support the idea that although the topological order in the ground state cannot be detected by local inspection, the ground state response at local scale can tell the topological phases apart from the non-topological phases.
منابع مشابه
درهمتنیدگی کوانتومی و گذار فاز کوانتومی تحت اتلاف در مدل ناهمسانگرد هایزنبرگ XXZ با برهمکنش ژیالوسینکی - موریا
Because the key issue in quantum information and quantum computing is entanglement, the investigation of the effects of environment, as a source of quantum dissipation, and interaction between environment and system on entanglement and quantum phase transition is important. In this paper, we consider two-qubit system in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii-moriya inter...
متن کاملThe Scaling of Entanglement Entropy for One Spatial XXZ Spin Chain
We investigate the scaling of entanglement entropy for one spatial XXZ spin chain by using matrix product states to approximate ground states. The entanglement entropy scales logarithmically with a coefficient that is determined by the associated conformal field theory, the quantum phase transitions occurred between Large-D and Halde phase, Halde phase and Neel phase. The scaling relation-ship ...
متن کاملThermal effect and role of entanglement and coherence on excitation transfer in a spin chain
We analyze the role of bath temperature, coherence and entanglement on excitation transfer in a spin chain induced by the environment. In Markovian regime, we show that coherence and entanglement are very sensitive to bath temperature and vanish in time in contrary to the case of having zero-temperature bath. That is while, finding the last qubit of the chain in excited state increases by incre...
متن کاملMagnetic properties of the spin S = 1/2 Heisenberg chain with hexamer modulation of exchange.
We consider the spin-1/2 Heisenberg chain with alternating spin exchange in the presence of additional modulation of exchange on odd bonds with period 3. We study the ground state magnetic phase diagram of this hexamer spin chain in the limit of very strong antiferromagnetic (AF) exchange on odd bonds using the numerical Lanczos method and bosonization approach. In the limit of strong magnetic ...
متن کاملThe quantum symmetric XXZ chain at ∆ = − 12 , alternating sign matrices and plane partitions
We consider the groundstate wavefunction of the quantum symmetric antifer-romagnetic XXZ chain with open and twisted boundary conditions at ∆ = − 1 2 , along with the groundstate wavefunction of the corresponding O(n) loop model at n = 1. Based on exact results for finite-size systems, sums involving the wavefunc-tion components, and in some cases the largest component itself, are conjectured t...
متن کامل